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Solutions of the diffusion equation are obtained for mass transfer in a fully devel- 
oped turbulent flow in a plain circular tube in two axisymmetric situations. 
The cases studied are a point source positioned a t  the centre of the tube and a 
ring source in the tube wall in which there is a uniform mass flux along a short 
length of the tube. The purpose of the work is to establish the correctness of the 
descriptions of the velocity profile and radial eddy diffusivities of mass and 
momentum in order to provide a firm base from which consideration of the non- 
axisymmetric situation could proceed. 

The turbulent velocity profile is deduced from a two-part model based on a 
sublayer profile and the Von KBrm&n similarity hypothesis. The radial eddy 
diffusivity of momentum is described by an expression due to Reichardt and 
Van Driest and from this the radial eddy diffusivity of mass as a function of radius 
is obtained by use of a ratio which takes account of fluid properties and the value 
of the radial eddy diffusivity. 

The analysis is substantiated by experiments carried out with nitrous oxide, 
Schmidt number = 0 7 7 ,  for Reynolds numbers from 20,000 to  130,000. The 
concentration profiles measured at  several axial positions downstream from the 
source are in good agreement with the analytical solutions in both cases. Direct 
measurements of the eddy diffusivity of mass and momentum were obtained as 
added confirmation and also gave good agreement with the theory. 

1. Introduction 
The problem of turbulent heat and mass transfer in a plain tube has received 

considerable attention both analytically and experimentally. The bulk of the 
work on this problem has been confined to fully developed flow with axisymmetric 
boundary conditions. Situations, in which there are circumferential variations 
in the heat or mass flux, or tangential variations of temperature or concentration, 
have been relatively neglected. Such cases are, however, very common in practice. 

An analysis of the non-axisymmetric situation would require a knowledge 
of the diffusion process in the tangential direction as well as in the radial direc- 
tion. The most useful information, which might be obtained, is the relationship 
which may exist between the tangential eddy diffusivity e, and the radial eddy 
diffusivity e,. The accuracy of the results, which could be obtained for e,, would 
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depend very much on having an accurate description of the radial eddy diffusi- 
vity and velocity profile. The literature on axisymmetric heat or mass transfer 
to a fully developed turbulent flow in a plain tube is extensive. There is some 
disagreement, however, about which description of the velocity profile or radial 
eddy diffusivity best fits the experimental measurements. 

Experimentally, it is easier to ensure a precisely defined boundary condition, 
either axisymmetric or otherwise, with mass transfer than it is with heat trans- 
fer. The diffusion of nitrous oxide gas at low concentrations in air provides an 
experimental situation, in which the eddy diffusivities of mass in both the radial 
and tangential directions may be studied. Further, the analogy between heat and 
mass transfer is probably better than that between heat and momentum transfer, 
since heat and mass are both scalar quantities. The analogy between heat and 
momentum is valid only for uni-directional flow. Conclusions drawn from the 
mass transfer situation should be very relevant to the heat transfer situation. 
Experimental work for mass transfer is rather less extensive than for heat 
transfer; although, since the governing equations are identical, the theoretical 
results and the assumptions, on which they are based, should be valid in both 
cases. 

In  some of the work on heat transfer in a plain tube (e.g. Sparrow, Hallman & 
Seigel 1957), the eddy diffusivity of momentum ern,+ was derived from the 
velocity profile, and the radial eddy diffusivity of heat eh:, taken equal to 
The value of ern,+ and eh,r thus obtained is - 1 at the centre of the tube. This may 
be passable for symmetric cases, but it is clearly wrong if there is heat transfer 
across the centre of the tube or other duct, due to asymmetry of the boundary 
conditions. Thus, for an annulus with heat fluxes, which were not equal at the 
two walls, Leung, Kays & Reynolds (1962) formulated the velocity profile to 
give the best fit with experimental evidence. The eddy diffusivity of momentum 
was described separately by means of the same criterion, and was not consistent 
with the velocity description. The radial eddy diffusivity of heat was then ob- 
tained from by the use of a ratio due to Jenkins (1951), which takes account 
of the value of em,r and of the Prandtl number of the fluid. 

Investigations of axisymmetric mass transfer in a plain tube have been carried 
out by Schlinger & Sage (1953), Towle & Sherwood (1939) and Sherwood & 
Woertz (1939). In  each of these, the radial eddy diffusivity of mass Ed,+ was taken 
as it constant. No consideration was given to the variation of Ed,+ with distance 
from the wall. This is clearly an oversimplification. 

Taylor (1954) considered dispersion in turbulent flow in a pipe and assumed a 
universal velocity profile, from which the radial eddy diffusivity of momentum 
was obtained. Thus, according to Taylor, the velocity u in the direction x of 
the axis of the tube of radius ro is given at any radius r by 

(Uc- u)/u* = f(4, (1) 

where z = r/ro,  and uc is the velocity at the centre of the tube. The friction velocity 
u* is , / ( ~ ~ / p ) ,  where T~ is the wall shear and p the density of the fluid. The eddy 
diffusivity of momentum is given by 

em,r = ~ou*z/f'(z), (2) 
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where f‘(z) = d f ( z ) / d z .  Taylor put &d,r equal to emd by Reynolds analogy. In  
Taylor’s work no account was taken of a sublayer velocity profile. There was 
no direct experimental support for Taylor’s calculations of the eddy diffusivity 
of mass, and the validity of the universal velocity profile f(z) is challengeable. 

Clearly, there is a lack of agreement in previous work on the correct description 
of the velocity profile and em,,, and or how eh,T is related to em,r in heat transfer, 
or 6d,r to em,r in mass transfer. Since the results for the tangential eddy diffusivity 
of mass Ed,,, depend very much on the accuracy of the expressions used for the 
velocity profile and radial eddy diffusivity of mass, it was considered essential 
to investigate axisymmetric mass transfer, and establish firm conclusions con- 
cerning these quantities, before dealing with the non-axisymmetric situation. 

2. Analysis and formulation of the equations 
(i) The diffusion equation 

Solutions of the diffusion equation were sought for two cases, in which mass 
transfer occurs from a specified axisymmetric boundary condition into a fully 
developed turbulent flow in a plain tube. The two cases studied were: (a) axi- 
symmetric diflusion from a point source in the centre of the tube, ( b )  axisym- 
metric diffusion from a ring source in the wall of the tube. 

These two cases were chosen, because in (a) the initial diffusion occurs mainly 
in the centre of the tube, where there is some evidence from hot wire anemometry 
to suggest that the turbulence is isotropic, whilst in ( b )  it occurs initially through 
the anisotropic sublayer. The correct description of the velocity in the sublayer 
is different from that of the velocity outside the sublayer in the centre of the 
tube. It was considered necessary to treat both these cases, since a satisfactory 
agreement between theory and experiment for only the one case would not be 
enough to allow conclusions to be drawn about the other with certainty. 

The governing differential equation of the concentration c, at any radius r 
and axial distance x, is given by 

where D is the molecular diffusivity. This equation contains the usual assumptions 
of steady-state conditions, constant fluid properties and negligible axial diffusion. 
It is put in non-dimensional form by the following substitutions 

r u* and u+=- U 

U*’ 
= 

V 

where v is the kinematic viscosity of the fluid, and the bulk mean concentration 
c, is given by 

28-2 
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Thus, (3) becomes 
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in which S is the Schmidt number v/D. 

conditions on (5 )  for the impermeable wall are 
If the initial concentration profile at x+ = 0 is denoted Bi, then the boundary 

O ( O , r , + )  = Oi, (6) 

and aelar+ = 0 at r+ = r t  for all x+, ( 7 4  

and aelar+ = 0 at r+ = 0 for all x+. (7b)  

Since (5 )  is linear, the concentration may be expressed as the sum of a fully 
developed part el, which is independent of x+, and a developing part e2. It is 
clear that, since the wall is impermeable, the concentration profile for large 

e=e,= 1. (8) 
x+ will be uniform. That is, 

A variables separable solution of the form 

02 = 4S(r+) Ilr(x+) 

is sought for the developing part. It is easily shown that 

- 2/9:x+ 
Ilr = e 4 7 4  

where the Reynolds number R, is defined by 

and 

The eigenvalues and eigenfunctions 9, are given by 

with boundary conditions 

and d$ldr+ = 0 at r+= ro+ for all x+, 
and d$ldr+ = 0 at r+ = 0 for all x+. 

'The solution for 8, is thus 

$(O,r+) = Oi- 1 

where 

(9) 
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from the Sturm-Liouville condition. The non-dimensional concentration 0 
is given at any point downstream of the source by 

e = el+e,, 
= i + n g * ~ n # , e x p ( R - )  - 2p:x+ 

n= 1 

(ii) Initial Concentration projile 
The above equations hold for both the cases studied if the position x+ = 0 is 
taken at the point source in the first case, or at  the downstream edge of the ring 
source in the second case. The difference between the two cases arises in evaluating 
the constants Cn from the initial profile 0, by (15). Evaluating Cn for a point source 
is difficult, since the corresponding 0, is discontinuous. It is easier, mathematic- 
ally, to take Sf for the point source as the measured concentration profile at a 
short distance downstream of the source. This procedure has a further advantage 
in the experimental situation, in that Oi may be determined at  some point 
downstream of the source, where disturbances to the velocity profile due 
to the presence of the source in the stream have become negligible. 

The second case has the advantage that the ring source is flush with the tube 
wall, and there are no disturbances to the velocity profile. If Oi is measured at  
the downstream edge of the ring source, the above solution is valid for all x+ 
in the impermeable tube. Alternatively, another solution may be found by use of 
superposition of the solution for a uniform wall mass flux, which avoids measure- 
ment of Si. Thus, if x+is measured from the upstream edge of the ring source, which 
has length z1+, then 0, = 0, and the solution is as follows. A comparison between 
the two solutions for the ring source establishes the validity of taking Si as a 
measured concentration profile and the accuracy of the measurements and of 
the equation used for 0,. 

(iii) Alternative solution for the ring source 
The concentration c is made non-dimensional by substituting H = (c - ci)/ 
(Jr,,/D), where J is the mass flux per unit area, and ci is the initial concentration 
at x+ = 0. 

Using the same non-dimensional variables as above, (3) then becomes 

The solution of (17) is written as a fully developed part Hl and a developing 
part H,. The solution for Hl is 

4 
H - -x++G(r+),  

I - R S  

where the first term follows from a simple mass balance, and G(r+) is given by the 
integration of 

4u+r+ 
0. 
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The boundary conditions on (19) are 
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G(O,r+) = 0, (20) 

dGldr+ = 0 at r+ = 0 for all x+ (2la) 

dGldr+ = l/r$ at  r+ = r$ for all x+. (21 b )  

The developing part H2 is again given by a variables separable solution as 

where the eigenfunctions and eigenvalues are identical to those pertaining to 
(1 1). The constants, however, are given by 

where use is made of the fact that H = 0 at x+ = 0. 
For values of x+ < xl+ the concentration is given by the sum of HI and H,. 

The solution for x+ > x t  is found by the addition of the solution for a uniform 
mass influx J in x+ > 0, and the solution for an equal but opposite mass efflux 
- J in x+ > x t  . Thus, for the impermeable section of the tube 

RS n=oo 

4x1 n = l  R and 8 =  l+---T I; 

(iv) Description of the velocity projile 
In order to integrate (1 l ) ,  (15), (19), (23) a description of the velocity profile u+ as 
a function of r+ is required. Many such descriptions for fully developed turbulent 
flow in a tube have been proposed. In  the present work, a two-part model is 
used, consisting of a sublayer close to the wall, for which 0 < y+ < ylf, and a 
mainstream outside of the sublayer, for which ylf < y+ < yof . Here y+ = r$ - r + ,  
and the non-dimensional distance from the wall to the centre of the tube is con- 
sequently y$ = r t  , and y: is the sublayer thickness. The validity of such a model 
is well established. In  the sublayer, u+ is given by integrating Deissler’s (1955) 
expression 

with the boundary condition that u+ = 0 at y+ = 0. 

given by 
This expression is derived from an eddy diffusivity of momentum expression 

(27) V = n%+y+[l- exp ( -nzu+y+)l, 

where n2 is a constant. Equation (27) is based on dimensional analysis, and the 
term in the brackets is chosen as the simplest expression, which fits the physical 
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arguments that the eddy diffusivity must be zero immediately adjacent to 
the wall, but approach the value n2uy for higher levels of turbulence. It also 
fulfils the criterion given by Elrod (1957) that E ~ , ~  must be proportional to y+ 
raised to a power not less than four, which is derived from consideration of the 
continuity equation applied to the fluctuating components of velocity very near 
to the wall. The success of this expression in predicting heat transfer at high 
Prandtl numbers has confirmed its superiority over earlier expressions. 

In  the mainstream, the velocity is obtained from Von Kkmhn’s (1930) 
similarity hypothesis, so that the total shear stress 7 is given by 

where the effect of molecular viscosity p is taken into account, and 

where 1 is the mixing length and K a constant. Integration of (28), and use of a 
linear shear stress variation across the tube, gives the expression for u in the 

d%+ K(du+/dy+)2 mainstream as 

dy+z=- 

and the boundary conditions on (29) are that at  y t  the slope and ordinate of u+ 
are equated to the corresponding values resulting from integration of the sub- 
layer profile. 

The velocity profile given by (26), (29) does not have some of the faults which 
are present in velocity profiles used in previous work. For example, there are 
no discontinuities in the velocity gradient at  the edge of the sublayer, and the 
correct centre-line boundary condition that du+/dy+ = 0 at y$ is fulfilled. In  
(29) the index n2 was determined by Deissler (1955) as 0.0154. Quarmby (1969) 
has shown that n2, which accounts for the effect of the wall on the turbulence, 
and the sublayer thickness yc, are functions of the flow. The relationship between 
n2 and r+, and between y$ and R, which was deduced by Quarmby, is shown in 
figure 1. For the Von K b m h  similarity hypothesis, the constant K was taken as 
0.36. This formulation of the equations of the velocity profile applies equally 
well to both the plain tube and parallel plate channel, and correctly describes 
the Reynolds number dependence of the u+ N y+ correlation in both configura- 
tions. The satisfactory agreement between theory and experiment holds for 
Reynolds numbers from 6000 to 400,000. 

(v) Description of the radial eddy diffwivity of momentum 
The equations for the velocity in the mainstream could be used to give a des- 
cription of em,,in that region from the expression 
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However, the value of em,r thus obtained is zero at  y$ . This is not in agreement 
with experiment; further, it is not acceptable, because it would predict a zero 
value for ed,? at y t  , if by some expression for their ratio. 
Accordingly, the radial eddy diffusivity of momentum is described by an ex- 
pression based on the work of Van Driest (1956) and Reichardt (1951). 

is obtained from 

R 
1 
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FIGURE 1. Relationship between the parameters of the velocity profile, 

Van Driest considered that near the wall the shear stress is given by (ZSa), 
whilst the mixing length for fully turbulent flow away from the wall, as given by 
Prandtl (1933), is 

The effect of the wall on the turbulent fluctuations is estimated from Stokes’ 
(1851) solution for an infinite flat plate undergoing simple harmonic motion in a 
infinite fluid. By analogy with Stokes’ solution, the velocity fluctuation near 
the wall is damped by a factor [l - exp( - y/A)], where A is a constant depending 
on the frequency of oscillation and Y. The Prandtl mixing length is multiplied 

1 = Ky. (31) 

by this factor to give 
7 = 9+K2gz[l--exp (-$)I (&) du . 

du 

By definition, 

substituting appropriately, Van Driest’s analysis leads to 

(32) 

(33) 
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In  the middle region of the tube, this expression reduces to 

44 1 

like the Von Kkmsn result, it gives a zero value at the centre and is thus un- 
acceptable. 

FIGURE 2. Radial eddy diffueivity of momentum. Experiment: 0, R = 155,000; 0, 
144,500; 0,115,000; x,  102,000; v, 68,500; V, 45,500; A,  32,600; +, 24,800; 0, 18,500. 
Theory, equation (36): -. 

However, an expression for in the middle region was suggested by Reich- 
ardt (1951), which gives good agreement with experiment, and a finite value for 

at the centre of the tube. This is 

Van Driest’s expression can be modified to become Reichardt’s middle region 
expression for larger values of y+ by equating (34b) and (35) and substituting 
into (34a). Thus, for all values of y+, the radial eddy diffusivity of momentum is 
given by 

where the value A = 26 given by Van Driest is used. 
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Equation (36) is used in both the sublayer and mainstream. In the sublayer it 
is indistinguishable from the eddy diffusivity expression of Deissler (1955, (27)). 
There is thus no discrepancy between emSr and the velocity profile in the sublayer. 
In  the mainstream, however, the velocity profile may also be deduced from (36) 
and (33). But such a procedure does not give a velocity profile, which is in as 
good agreement with experiment as the two part model described above. 

In  (36) the factor K has been introduced to give better agreement with ex- 
periments, which are described below. The factor K' was determined as (a )  K' = 1 
for Reynolds numbers less than 40,000, (b )  K' = 1.15 for Reynolds numbers 
greater than 40,000. Figure 2 shows the agreement between (36) and experiment. 

(vi) Radial eddy diffuusivity of mas8 

The main purpose for this work is to determine the ratio of the radial eddy diffusi- 
vity of mass to that of momentum. The prediction of the ratio of the eddy diffusi- 
vity of heat to that of momentum has been the subject of much investigation. 
Since, as mentioned above, there are some arguments to suggest that the analogy 
between heat transfer and mass transfer would be a good one, it seemed justifi- 
able as a beginning to take expressions for the ratio of ed,r to from the work 
on the ratio eh,r to 

Much experimental work has shown that the Reynolds analogy is of restricted 
validity, for example, the work of Page & Falkner (1932), Corcoran & Page 
(1952) and Sleicher (1958) for heat transfer in air, and of Isakoff & Drew (1951) 
for liquid metals. In  the light of such results, attempts have been made to modify 
the Reynolds analogy to include the influence of the physical properties of the 
fluid. An expression for the ratio of eh,r to proposed by Jenkins (1951) has 
been used in heat transfer calculations with some success. In  the Prandtl con- 
cept, the eddy moves with constant velocity and temperature, so that the tem- 
perature fluctuation t' is equal to Z(dt/dy), and 

ch,r = lV, 137) 

where v is the eddy velocity. Jenkins considered that eddies change their energy 
and momentum while moving as a result of thermal conductivity and molecular 
viscosity, so that 8h,r is reduced; also, not all the heat, which the eddy had in the 
original layer, is given up to the second layer; a lesser amount is given up, and 

where ti is the initial temperature of the eddy, and t, the temperature on dis- 
integration. The temperature of the moving eddy is estimated by assuming it to 
be a sphere of radius equal to the mixing length, whose surface temperature 
varies linearly with time. For such a model, Carslaw & Jaeger (1948) gave the 
average temperature of the sphere a t  time T as 

where a is the thermal diffusivity. When the eddy reaches the second layer a 
time interval l/v has elapsed, and tf - .ti may be obtained from (39) by substitution 
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of this quantity for T. Jenkins further considers that the momentum transfer 
from the eddy during its motion should be given by an equation of the same form 
as that of Carslaw & Jaeger. Thus 

em,r = ___ 2(lv)2 (--?(?) 1 5 I[l-exp(-pv)])’ n2m2v v 16 71’ Y ,=in 

and the ratio of to em,r follows. 

1 10 100 1000 10,000 40,000 

%.,lV 

FIGURE 3. Ratio of radial eddy diffusivity of mass to radial eddy diffusivity of momen- 
tum. - , Jenkine’s theory, equation (41); 0, experimental measurements, S = 0.77. 

By replacing the Prandtl number in Jenkins expression by the Schmidt 
number, and a by D, an expression relating to ern,? is obtained, thus 

(41) %r - f i  
em, r 

In this expression the denominator may be related to em,r, and the ratio may 
be thus expressed as a function of em,r. This is shown in figure 3. 

The model of a spherical eddy, which loses heat and momentum during its 
motion between layers, was also used by Azer & Chao (1960), who took the sur- 
face coefficient of heat transfer from laminar boundary-layer theory for a flat 
plate. In  the Azer & Chao expression, the ratio of eddy diffusivities is related to 
the Prandtl number and Reynolds number of the flow, rather than to the Prandtl 
number and the local value of em,r. An analysis of heat transfer in concentric 
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annuli given by Quarmby & Anand (1969) showed, surprisingly, that the results 
given by the Jenkins expression, and the Azer & Chao expression, are in very 
close agreement. In  this work, it was first intended to try out proposals for the 
ratio of E ~ , ~  to em,?. The results achieved with the Jenkins expression were satis- 
factory, however. 

3. Calculations 

since R may be written as 
The choice of rof as the basic parameter determines the Reynolds number; 

and this may be evaluated by substitution of u+ evaluated from (26) and (29). 
The values of r i ,  corresponding to the Reynoldsnumbers considered in this work, 
are given in table 1. The eigenvalues of (1 1) were found by numerical integration, 
using a Runge-Kutta method and a Newton-Raphson iteration scheme to allow 
an accurate determination. The constants were evaluated also by Runge-Kutta 
integration from either (16) or (23), as appropriate. These calculations were made 
for exactly those Reynolds numbers for which the experiments were performed. 
For diffusion from the point source in the centre of the tube the Reynolds numbers 
were 20,800, 33,000, 67,000, 82,000, 101,000, 119,000 and 130,000. For diffusion 
from the ring source the Reynolds numbers were 20,800 and 44,700. 

7,' R 
600 20,778 
900 33,027 

1,180 44,741 
1.670 66,902 

7: R 
2,000 81,944 
2,405 101,076 
2,780 119,132 
3,000 129,858 

TABLE 1. Relationship between Reynolds number and the parmeter 7:. 

The measured initial profile for the centre point source was described by fitting 
an equation of the form 

whilst for the ring source the measured initial profile was described by a poly- 
nomial as 

The eigenvalues for the ring source for R = 20,800 and 44,700 are, of course, 
the same as for the centre-point source. The constants are evaluated from (44). 
If the ring source is treated by superposition, the constants are evaluated from 
(23), rather than from (15). 

Use of the constants and eigenvalues thus obtained allows the non-dimensional 
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proUe to be calculated from either (16) or (25), for any values of x+ and r.t A 
comparison with the experiment and measured concentration profiles would 
show whether the description of ed,? and the velocity profile is correct. 

4. Experimental investigation 

of the analysis described. 
The following experimental investigation was conducted to provide a test 

(i) Experimental apparatus 
Measurements of the velocity profile and concentration profile were made in 
fully developed turbulent flow of air in a plain brass tube. The tube was 3.875 in. 
inside diameter, with a 0.062 in. wall thickness. The total length of the tube was 

(4 (b) 
FIGURE 4. Detail of traversing gear and pitot sampling tube. (a) A, Section on A-A 
shown in (b) ; B, traversing gear mounted on block C is free to rotate when nuts on studs 
are made loose; D, 8 in. diameter. E, 4 in. diameter; P, 4 in. diameter '0' ring grooves for 
air seal. 

42 ft 9 in., of which 19 ft 3 in. was the developing section, and 23 ft 6 in. the work- 
ing section. Filtered clean air was supplied by a fan, and Reynolds numbers up 
to 155,000 could be obtained. 

Pressure taps along the tube allowed the wall shear stress to be determined in 
the working section. Air temperatures in the working section were measured by 
thermocouples. The mass flow rate was determined very accurately by the velocity 
profile near the exit of the tube. Velocity profiles were measured by rectangular- 
mouthed pitot tubes 0.010 in. wide, made from stainless steel hypodermic tube. 

t The constants and eigenvalues were determined to six significant Sgures and the 
complete tables are too lengthy to be given here. They may be obtained from either author. 
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The gas sampling tubes were identical to the pitot tubes. Both kinds of tube 
were held in mild steel circular traversing blocks. These blocks could be rotated 
about the tube axis, and were fitted with a micrometer traversing gear. The 
arrangement is shown in figure 4. It allowed velocity and concentration measure- 
ments to be made at any radial or tangential position at  each traversing station. 
The eleven traversing stations were positioned at 4, 11, 20, 29, 38, 62-5, 102.5, 

FIGURE 5. Detail of ring source. A ,  flange; B, brass wire gauze. G ,  braas tube; D, 5% in.; 
E,  Vyon porous plastic; P ,  3% in. diameter; cf, 6 in. diameter; H ,  Perspex outer tube; 
I ,  nitrous oxide inlets. 

142.5, 182.5,222-5 and 274.5 in. from the source respectively. Pressure measure- 
ments were made using a Cassella micrometer, which is accurate to 0.01 mm. The 
nitrous oxide gas samples were analyzed with a Hilger-Watts infrared gas 
analyser. When calibrated, this is accurate to 1 yo of full-scale deflexion. 

The centre-point source was made very simply from stainless steel hypodermic 
tubing 0.0425 in. outside diameter, and 0.030 in. inside diameter. A right angle 
bend in this tube allowed the mouth to be positioned accurately in the centre of 
the working section. The mouth pointed downstream rather in the manner of a 
backward facing pitot tube. The ring source is shown in figure 5. When assembled, 
the porous plastic wall was machined t o  size, so that it was perfectly flush with 
the wall of the working section. 

Nitrous oxide gas, Schmidt number = 0.77, was supplied to each of these 
sources from a storage bottle via a pressure reduction valve and needle valve, 
which allowed a fine control of the amount of gas injected. The volume flow of 
nitrous oxide was measured by calibrated rotameter gauges. These were accurate 
to Q %. The bulk concentration was calculated from this measurement. 

(ii) Experimental measurements 

In  some preliminary experiments, measurements of the wall shear and velocity 
profile at different axial and tangential positions confirmed that the development 
length of about 80 diameters was sufficient to ensure fully developed axisym- 
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metric turbulent flow throughout the working section. The friction factors, 
and the u+ N y+ results calculated from these measurements, were in very good 
agreement with results in the literature. 

was evaluated from (33) for 
several values of Reynolds numbers in the range considered. The axial position 
taken for this evaluation was I+  = 31. The slope du+/dy+ was evaluated from 
the measured velocity profile by use of numerical differentiation formulae 
given by Lanczos (1958). Since the differentiation of empirical functions is a 
rather uncertain process the results were checked by the Douglas-Avakian 

The radial eddy diffusivity of momentum 

z 

FIQURE 6. Theoretical and experimental concentration profiles for the centre point source. 
R = 20,800. Theory, equation (16) : - . Experiment, x+: 0,13-96; 0, 18.60; x ,  31.00; 
A. 51-66; +, 113.64. 

method. The results are shown in figure 2, where a comparison is made with the 
proposed expression for em,?, equation (36). The values given for K' were deter- 
mined from these experiments. 

With the centre point source in position there would be a disturbance of the 
velocity profile. Measurements of the velocity were made at the first axial 
position downstream of the source. It was established that any disturbances due 
to the source were no longer detectable. Accordingly, 0, could be measured there, 
and the assumption of a fully developed turbulent velocity profile was still valid. 

With the centre point source, measurements of the concentration profile were 
made at each axial position for each of the seven Reynolds numbers listed above. 



448 A .  Quarrnby and R. K. Anand 

With the ring source, measurements were made at each axial position for the 
two Reynolds numbers listed above. The axisymmetry of the concentration pro- 
files was checked by taking measurements at several tangential positions. It 
was found to be perfectly satisfactory. The high density of the nitrous oxide 

1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0 
z 

FIGURE 7. Theoretical and experimental concentration prof333 for the centre point 
source. R = 129,900. Theory, equation (16) : - . Experiment, d: 0, 13.95; 0, 18-60; 
X ,  31.00; A, 51.66; +, 113.64. 

tracer gas (1-5 times that of air) did not lead to asymmetry, since the amount 
of gas was small. Bakke & Leach (1965) have shown that buoyancy has anegligible 
effect in turbulent diffusion in a horizontal flow, if the layering number is greater 
than 10. In these experiments the minimum value of the layering number was 
450. 

5. Comparison between theory and experiment 
Some results for diffusion from a point source at the centre of the tube are 

shown in figures 6-8. The measured concentration profiles at various axial 
positions are shown in figure 6 for the lowest Reynolds number studied, 
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R = 20,800, and in figure 7 for the highest Reynolds number, R = 130,000. 
Figure 8 shows the axial development of the concentration profile for R = 20,800. 
In  each of these the agreement between experiment and the analysis is most 
satisfactory. Equally good agreement was found for the five other Reynolds 
numbers considered. 

Figure 9 shows the measurements for R = 20,800, obtained for the ring source 
at z+ = 0, which corresponds to the downstream edge of the source, and a t  

X+ 

FIQTJRE 8. Axial development of the concentration profiles for the centre point source. 
R = 20,800. Theory, equation (16): - . Experiment, z: 0, 0.000; 0, 0-198; X ,  0-396; 
A, 0.594; V, 0.792; +, 0.990. 

x+ = 4.15. The agreement between the experiments and the superposition theory 
at the downstream edge of the source is quite satisfactory. The measured con- 
centration profiles at  the other axial positions are shown in figure 10. In  these 
cases, the superposition analysis and analysis using a polynomial to describe 
the initial profile are indistinguishable, and both are in satisfactory agreement 
with experiment. Equally good agreement was found for R = 44,700. It may be 
noted that, in the experimental results presented, the non-dimensional concen- 
tration profile attained the value unity for large z+. This result establishes the 
accuracy of the measurement of concentration, and also that of the measurement 
of the amount of gas injected. If either of these were inaccurate, an anomalous 
result would have been obtained: the average value of 8 across the tube would 
not have been unity. 

In  addition to providing a test of the analyses and the validity of the assump- 
tions made concerning the ratio of the radial eddy diffusivity of mass to that of 
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momentum, the measured concentration profiles may also be used to give a 
more direct determination of Thus, (3) may be written 

12 
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FIGURE 9. Theoretical and experimental concentration profiles for the ring source at low 
zf. R = 20,800. Experiment, x+: 0, 0.00; 0, 4.13. ----, constant mass flux source 
theory; -, polynomial fit theory. 

In  (45), the slopes aO/ax+ and M / a z  were evaluated from the measured con- 
centration profiles by use of the numerical differentiation formulae. The same 
methods were used as in the mentioned evaluation of em,,, and the same axial 
position as before, x+ = 31, was taken for determining ed,,. Figure 11 shows the 
results of determining for the seven Reynolds numbers considered. The 
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measurements are compared in figure 11 with the description of ed,? given 
by using (36) for em,? and (41), the expression for the ratio of ed,r to em,?. The 
agreement is quite satisfactory. These measurements may be expressed as the 
ratio of 8d,r to em,?. A comparison with Jenkins expression is shown in figure 3. 

w 2.25 

z 

FIGURE 10. Theoretical and experimental concentration proflles for the ring ~ource. 
R = 20,800. Experiment, n+: 0, 13.43; x ,  22.73; 0, 35.13; +, 55.79; A,  117.77. ----, 
constant mass flux source theory ; ---, polpornid fit theory. 

A comparison of the present results with previous work is not easy, since, 
a0 mentioned, some of the earlier investigations used average values for ed,?. 
Average values may be obtained from the present results by integration of ea,? 
across the tube, and a comparison may be made with the results of Towle & 
Sherwood (1949). Towle & Sherwood carried out experiments in a fully developed 
turbulent air stream, in which hydrogen and carbon dioxide were introduced a t  
the axis of a plain tube. Measurements of the concentration profile were made over 
the central third of the diameter for the Reynolds numbers from 12,000 to 180,000. 
The results were then interpreted in terms of the calculated average values 
of the eddy diffusivity, which were obtained by comparing the data with an 
adaptation of an analysis given by Wilson (1904). A comparison between the 
present results and Towle & Sherwood’s results is given in table 2. The agree- 
ment is satisfactory. 

Other results for an average Ed,? have been obtained by Schlinger & Sage (1953). 
Schlinger & Sage injected natural gas through a pipe of 1 in. diameter placed 
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z 

FIGURE 11. Radial eddy diffusivity of mass. Theory, equationrr (36), (41): - . Experi- 
ment: 0, R = 129,900; 17, 119.100; x, 101,000; V, 81,950; A, 66,900; +, 33,000; 
0, 20,800. 

Reynolds number Average ed,, Average !& 
V 

from (36) 
Towle & Sherwood (1939) 

om2/s 

12,200 4.2- 5 
24,600 7 - 7.3 
44,000 11.9-13 
57,400 13 -13.9 
91,000 20.3-27 

119.000 24 -27.9 
180,000 36.5-45 

a t  70°F 

27.6- 35.0 20-6 
46.1- 48.2 41.0 
78.5- 85.6 80.9 
85.7- 91.6 103 

134 -178 159 
158 -184 193 
241 -297 278 

Schlinger & Sage (1953) 

ftys x 103 
44,000 3.870 
88,000 9.500 

176,000 23.0 

at 80°F 

21-1 80.9 
51.7 159 

125 275 

TDLE 2. Comparison of present remlts for the average radial eddy diffusivity of 
maas with previous work. 
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at  the axis of a pipe 4 in. in diameter. A comparison with their results and the 
present results is given in table 2. The agreement is not good. It is felt that the 
results of Schlinger & Sage are not really appropriate to the present case, because 
of the disturbance of the large injector in the turbulent air stream. 

I I 1 I I I I I I 

1 4 0.5 
2 

'\ 

'\ 

'\. 

0 

FIGURE 12. Various assumptions about the radial eddy diffusivity of momentum. 
0, Taylor (1954), z/f(z); ---- , similarity hypothesis, Von K & m h  (1930); -, 
equation (36). 

Taylor (1954) gave results for the dispersion of matter in turbulent flow in 
a pipe, where the concentration of brine was determined by measurement of the 
electrical conductivity. The value of the virtual coefficient of diffusion was ob- 
tained from the experimental results, but this is not comparable with values for 
ed,r. To compare the present results with Taylor's work, we need to calculate the 
eddy diffusivity function he assumed by use of (2), and the table of values of z 
andf'(z), which he gave. Equation (2) may be written 

~ ? n , , / Y  = yo' Z/f '(Z),  (46) 

and thus be linked to the Reynolds number by table 1. Taylor linked u+ with 
the Reynolds number by an empirical equation for the friction factor. The results 
on table 1 are in perfect agreement with the friction factor equation, and are 
simpler t o  use here. From the table given by Taylor, the values of z/f'(z) were 
calculated, and these values normalized with respect to their average value are 
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shown in figure 12. We cannot deduce from the Taylor table whether em,r 
becomes zero or not at  x = 0, but the general shape of the result agrees with 
(36). However, the values for em,,/v, from (46), are less by about one-third. Esti- 
mating the average value of z/f’(z) from figure 12 gives an average value for 
em,Jv at R = 44,000 as 56.6, whilst at  R = 119,000 we get em,Jv = 133. These 
figures also give us Taylor’s values of 6d,r ,  since Taylor assumed E ~ , ~  = em,r. Figure 
12 also shows a normalized result for em,,, according to both (36) and the Von 
KkmBn similarity hypothesis. 

6. Conclusion 
Good agreement has been found between the predictions of the analysis 

presented for mass transfer into a fully developed turbulent flow in a plain 
tube and careful experiments using nitrous oxide, Schmidt number = 0.77, 
as a tracer gas in air. The range of the investigation covered Reynolds numbers 
from 20,000 to 130,000, and good agreement was found throughout this range. 
The agreement was equally good whether the mass transfer was mainly taking 
place in the central core of the flow or in the wall region. It is concluded, that the 
description of the velocity and eddy diffusivity profiles used in the solution 
of the diffusion equation, is accurate. 

The formulation used for the solution of the diffusion equation for fully 
developed turbulent flow in a plain tube may be summarized as follows. The 
velocity profile is described by a two-part model of a sublayer and mainstream. 
In the sublayer, Deissler’s (1955) expression is used and, in the mainstream, the 
velocity is deduced from Von KkmBn’s (1930) similarity hypothesis. The 
radial eddy diffusivity of momentum is given by an expression, based on the 
work of Van Driest (1956) and Reichardt (1951), in which the influence of the 
wall on the turbulent fluctuations is taken into account. This expression gives 
a finite value for eddy diffusivity at the centre of the tube. The radial eddy diffusi- 
vity of mass is obtained from that of momentum by a ratio based on the work of 
Jenkins (1951) which takes account of the fluid properties. 

In addition to the evidence provided by the comparison of the theoretical 
and experimental concentration profiles, accurate direct measurements were 
obtained of the ratio of the eddy diffusivity of mass to that of momentum. 
The agreement with Jenkins expression for Schmidt number = 0.77 was satis- 
factory, and gives added confirmation to the above conclusion. The results deter- 
mining the eddy diffusivity of mass as a function of radial position are an im- 
provement on previous work on this subject, since it is usually assumed to have 
a constant value for a given flow. 

The theoretical results obtained for axisymmetric diffusion, and the experi- 
mental techniques developed in this investigation, establish a firm base, from 
which the non-axisymmetric situation may be studied. Also, the present formula- 
tion of the solution of the diffusion equation for fully developed turbulent flow 
in a plain tube may be used to give accurate solutions for axisymmetric situations, 
which are different from the ones considered here. 
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